

KNX IP 路由器

用户手册

V2.00 2021/4/16 Friday

目录

1.	概过	<u>Š</u>		3
	1.1.	产品	介绍	3
	1.2.	拓扑组	结构	4
		1.2.1.	支线耦合器	4
		1.2.2.	区域耦合器	5
		1.2.3.	多区域耦合器	6
2.	安装	長指导		7
	2.1.	安装计	说明	7
	2.2.	注意	事项	8
3.	指示	与操作.		9
4.	功能	比配置		10
	4.1.	Genei	ral 参数	10
		4.1.1.	Device name	10
		4.1.2.	IP Address mode	10
		4.1.3.	Tunnel 链接起始地址	11
		4.1.4.	Knx IP Routing multicast address	11
		4.1.5.	Connection heartbeat time(m)	11
		4.1.6.	Alive time(s) of channel connections	11
		4.1.7.	Enable Knx -> Ip routing	11
		4.1.8.	Enable or Disable ping function	12
	4.2.	IP Cor	nfigure 参数	12
		4.2.1.	IP address Byte X	12
		4.2.2.	Subnet mask Byte X	13
		4.2.3.	IP gateway Byte X	13
	4.3.	KNX->	>IP 参数	13
		4.3.1.	Group telegrams(main groups 0 to 13)	14
		4.3.2.	Group telegrams(main groups > 13)	14
		4.3.3.	Individually Frames	14
		4.3.4.	Broadcast Frames	15
		4.3.5.	ACK of group frames	15
		4.3.6.	ACK of individual frames	15
	4.4.	IP->KI	NX 参数	16
		4.4.1.	Group frames(main groups 0 to 13)	16
		4.4.2.	Group frames(main groups > 13)	17
		4.4.3.	Individually frames	17
		4.4.4.	Broadcast frames	17
	4.5.	Ping c	control setting	18
		4.5.1.	Control group address number	18
		4.5.2.	Ping number for confirming	18
		4.5.3.	Minute of ping period	18
		4.5.4.	Second of ping period	18
		4.5.5.	Host ping ip address 1-4	18

4.6.	Ping co	ontrol group parameters	19
	_	Group address data X type	
		Group address X	
		Group data X if link up	
		Group data X if link down	
4.7.	ETS 连	· 接管理	20
		表功能	
	工程 #		

1. 概述

1.1. 产品介绍

KNXIP是一款集 KNXnet/IP 网关和 KNX 路由器功能于一体的 KNX IP 路由器,其主要特点如下:

- 遵循标准的 KNXnet/IP 协议,可作为 KNXnet/IP 服务器提供标准的总线设备配置、管理、 下载等功能。
- 支持多达5个客户端进行连接通讯。
- 路由器功能可作为 KNX 支线耦合器、区域耦合器和多区域耦合器使用。
- 100M 通讯速率,适合作为 KNX 高速主干通讯接口。
- ▶ 大容量缓存,可有效解决报文大量突发所造成的丢包。
- 低功耗、稳定可靠。

1.2. 拓扑结构

1.2.1. 支线耦合器

KNXIP路由器可以作为 KNX 支线耦合器使用,起到过滤报文、降低总线负载的作用。当作为支线耦合器时,其物理地址为 X.Y.0($X=0^{-15}$, $Y=0^{-7}$),当前支线之上将不再有任何区域耦合器。

图 1.1 支线耦合器拓扑结构图

1.2.2. 区域耦合器

KNXIP路由器可以作为 KNX 区域耦合器使用,起到过滤报文、降低总线负载的作用。当作为区域耦合器时,其物理地址为 X.0.0(X = $0^{\sim}15$),当前区域之下可以部署标准的 KNX 支线耦合器(两侧均为 KNX 总线)。

图 1.2 区域耦合器拓扑结构图

1.2.3. 多区域耦合器

KNXIP路由器可以作为多区域耦合器使用,扩展系统容量的作用。当作为多区域耦合器时,其物理地址为 $0.0.0~(X=0^{\sim}15)$,后台系统通过 IP 路由器的 IP 地址来区别多个独立的 KNX 系统。

图 1.3 多区域耦合器拓扑结构图

2. 安装指导

2.1. 安装说明

- KNXIP采用标准 DIN 导轨安装,请按图示方式将 KNXIP可靠安装到导轨上。
- 请按图示连接好 KNX 端子和 24V 电源端子,24V 电源请由 KNX 电源专用辅助电源提供。 连接完成后, KNX 报文灯闪烁表示有 KNX 报文通讯。
- 请按图示连接 IP 线缆,连接成功后,LAN 口指示灯常亮表示连接成功。

图 2.1 导轨安装示意图

图 2.2 接线示意图

2.2.注意事项

- 请按产品外壳标识进行接线,请勿将 24V 电源与 KNX 通讯接口接反。
- 24V 电源请由 KNX 电源专用辅助电源提供。
- 安装时必须注意施工粉尘。
- 特别:由于下载控制过程有 ETS 标准化控制,网关参数下载不适用 ETS 部分下载!!

3. 指示与操作

标号	名称	功能
1	IP 接口	连接 IP 线缆,采用标准 RJ45 插座。
2	IP 侧通讯指示灯	常亮表示 IP 侧连接正常;闪烁表示 IP 侧有通讯。
3	KNX 侧通讯指示灯	闪烁表示 KNX 侧有通讯
4	物理地址框	用于书写 IP 路由器物理地址
5	编程指示灯	指示灯常亮表示处于编程模式。
6	编程按钮	按钮用于进入/退出 KNX 编程模式。
7	KNX 接线端子	连接 KNX 总线,采用标准 KNX 端子
8	24V 电源端子	连接辅助电源,采用标准 KNX 端子。

4. 功能配置

KNXIP通过 ETS3/4/5 进行配置,可以参数配置、通讯对象组地址关联等。

4.1. General 参数

图 4.1 General 配置参数

4.1.1. Device name

该参数为字符型参数。最多30个英文字母及符号

该参数用于为 KNXIP设置一个可读的识别名。在客户端(ETS 或后台软件)发现 KNXIP IP 路由器时,IP 路由器将提供该信息至客户端,客户端将展示该信息,便于用户识别具体 IP 路由器。

4.1.2. IP Address mode

该参数为选项型参数。可选选项:

- Auto (Dhcp)
- Manual

该参数用于设置 KNXIP 路由器 IP 地址的获取方式。KNXIP 路由器支持"动态分配"和"手动设置"两种方式设置本地 IP 地址。

注:本路由器出厂时,地址设置为手动模式,默认 IP 地址是 192.168.0.118,子网掩码

是 255.255.255.0

选项	说明
Dhcp	动态分配方式获取 IP 地址。IP 侧网络中有 DHCP 服务器(如路由器)时,DHCP 服务器将自动为 IP 路由器分配一个合适 IP 地址。
Manual	手动设置 IP 地址。选择该项后,ETS 参数配置页面中将出现额外的 IP 地址配置页面,该 IP 地址配置页面中手动设置 IP 地址、IP 路由器地址及掩码地址。

4.1.3. Tunnel 链接起始地址

如下图:

Start physical address for channel link 64759

\$\Delta\$

KNXIP支持 5 个链接,每个链接需要分配一个物理地址,这些地址以此处的设置为起始地址,按照链接建立的先后顺序自动分配。

注: 默认地址比较高,一般情况下无需修改。

4.1.4. Knx IP Routing multicast address

该参数用于设置以太网侧的实际组播地址,默认为 KNX 协议系统组播地址 224.0.23.12。 在实际系统配置需要划分组播地址时,可以通过该处进行配置。

4.1.5. Connection heartbeat time(m)

该参数用于设置网关跟客户端(如 PC)建立连接时的心跳超时时间,默认值为协议规范规定的时间,如果网络延时比较大,可以增大该数值。一般情况下选择默认。

4.1.6. Alive time(s) of channel connections

该参数用于设置网关跟客户端(如 PC)建立隧道连接时的报文响应超时时间,默认值 为协议规范规定的时间,如果网络延时比较大,可以增大该数值。一般情况下选择默认。

4.1.7. Enable Knx -> Ip routing

该参数用于配置网关是否将 KNX 侧报文路由到 IP 侧。在标准协议中,KNX 侧报文在通过过滤后,默认是发送到 IP 侧。在实际项目中,有可能通过复制的方式来配置每户的网关配置。这样容易导致不同户之间的报文相互串通。通过将该参数设置成 Disable,可以将一户的报文只发送到该户的隧道连接终端。

4.1.8. Enable or Disable ping function

该参数用于设置是否开启网关主动 PING 指定客户端功能。如果选择了 Enable,网关会通过 PING 功能来检测网关跟指定客户端的网络是否正常。

在网关检测到网络 PING 异常时,会根据 ETS 在 Ping control setting 以及 Ping control group parameters 中指定的组地址和数据类型发送指定的数据,并在网关检测到网络恢复时,根据配置的组地址和数据类型发送出指定的数据

4.2. IP Configure 参数

图 4.2 IP Configuration 配置参数

该标签页在 General 标签页中 IP Address Assignment 参数选择 Manual Input 选项时可见。

4.2.1. IP address Byte X

该参数为数值型参数。取值范围为0~255。

该参数用于设置 KNXIP 路由器的 IP 地址,该地址在局域网内必须是唯一无重复的。举例设置 IP 地址为 192.168.1.10,则需如下设置:

Byte 1 : 192 Byte 2 : 168 Byte 3 : 1 Byte 4 : 10

4.2.2. Subnet mask Byte X

该参数为数值型参数。取值范围为0~255。

该参数用于设置 KNXIP 路由器的子网掩码地址,该地址用于识别子网范围。典型子网掩码地址为 255.255.255.0,则需如下设置:

Byte 1 : 255 Byte 2 : 255 Byte 3 : 255 Byte 4 : 0

4.2.3. IP gateway Byte X

该参数为数值型参数。取值范围为0~255。

该参数用于设置 KNXIP 路由器的 IP 侧默认网关地址。典型子网掩码地址为192.168.1.1,则需如下设置:

Byte 1 : 192 Byte 2 : 168 Byte 3 : 1 Byte 4 : 1

4.3. KNX->IP 参数

图 4.3 KNX->IP 配置参数

4.3.1. Group telegrams(main groups 0 to 13)

该参数为选项型参数。可选选项:

- * Router(默认)
- Block
- Filter

该参数用于设置 KNXIP 路由器的对主组地址(组地址格式为 A/B/C, 其中 A为主组地址)为 0~13 的组地址报文的过滤行为。

选项	说明
Router	对主组地址为 0~13 的组地址报文不进行任何过滤,报文可自由从 KNX 侧 转发到 IP 侧
Block	对主组地址为 0~13 的组地址报文进行阻拦,报文无法从 KNX 侧转发到 IP 侧
Filter	对主组地址为 0~13 的组地址报文按照过滤表进行过滤,在过滤表内的组地址报文可自由从 KNX 侧转发到 IP 侧

4.3.2. Group telegrams(main groups > 13)

该参数为选项型参数。可选选项:

- Router(默认)
- Block

该参数用于设置 KNXIP 路由器的对主组地址(组地址格式为 A/B/C, 其中 A 为主组地址)大于 13 的组地址报文的过滤行为。

选项	说明
Router	对主组地址大于 13 的组地址报文不进行任何过滤,报文可自由从 KNX 侧 转发到 IP 侧
Block	对主组地址大于 13 的组地址报文进行阻拦,报文无法从 KNX 侧转发到 IP 侧

4.3.3. Individually Frames

该参数为选项型参数。可选选项:

- * Router(默认)
- Block
- Filter

该参数用于设置 KNXIP 路由器的对物理地址寻址的单播报文的过滤行为。

选项	说明
Router	对所有物理地址寻址的单播报文不进行任何过滤,报文可自由从 KNX 侧转 发到 IP 侧
Block	对所有物理地址寻址的单播报文进行阻拦,报文无法从 KNX 侧转发到 IP 侧
Filter	对所有单播报文进行过滤,只有物理地址不属于本条支线的单播报文才能 转发到 IP 侧。

4.3.4. Broadcast Frames

该参数为选项型参数。可选选项:

- Router(默认)
- Block
- 该参数用于设置 KNXIP 路由器的对广播报文的过滤行为

。 选项	说明
Router	对所有广播报文不进行任何过滤,报文可自由从 KNX 侧转发到 IP 侧
Block	对所有广播报文进行阻拦,报文无法从 KNX 侧转发到 IP 侧

4.3.5. ACK of group frames

该参数为选项型参数。可选选项:

- Only when routing(默认)
- Always

该参数用于设置 KNXIP 路由器对组报文发送确认的行

为 选项	说明
Only when routing	只有当路由报文时发送确认
Always	总是发送确认

4.3.6. ACK of individual frames

该参数为选项型参数。可选选项:

- Only when routing(默认)
- Always

该参数用于设置 KNXIP 路由器对物理地址寻址的单播报文发送确认的行为

选项	说明
Only when rouging	只有当路由报文时发送确认
Always	总是发送确认

4.4. IP->KNX 参数

图 4.4 IP->KNX 配置参数

4.4.1. Group frames(main groups 0 to 13)

该参数为选项型参数。可选选项:

- * Router(默认)
- Block
- Filter

该参数用于设置 KNXIP 路由器的对主组地址(组地址格式为 A/B/C, 其中 A 为主组地址)为 0~13 的组地址报文的过滤行为。

选项	说明
Router	对主组地址为 0~13 的组地址报文不进行任何过滤,报文可自由从 IP 侧转 发到 KNX 侧
Block	对主组地址为 0~13 的组地址报文进行阻拦,报文无法从 IP 侧转发到 KNX 侧
Filter	对主组地址为 0~13 的组地址报文按照过滤表进行过滤,在过滤表内的组地址报文可自由从 IP 侧转发到 KNX 侧

4.4.2. Group frames(main groups > 13)

该参数为选项型参数。可选选项:

- * Router(默认)
- Block

该参数用于设置 KNXIP 路由器的对主组地址(组地址格式为 A/B/C, 其中 A 为主组地址)大于 13 的组地址报文的过滤行为。

选项	说明
Router	对主组地址大于 13 的组地址报文不进行任何过滤,报文可自由从 IP 侧转 发到 KNX 侧
Block	对主组地址大于 13 的组地址报文进行阻拦,报文无法从 IP 侧转发到 KNX 侧

4.4.3. Individually frames

该参数为选项型参数。可选选项:

- Router(默认)
- Block
- Filter

该参数用于设置 KNXIP 路由器的对物理地址寻址的单播报文的过滤行为

选项	说明
Router	对所有物理地址寻址的单播报文不进行任何过滤,报文可自由从 IP 侧转发到 KNX 侧
Block	对所有物理地址寻址的单播报文进行阻拦,报文无法从 IP 侧转发到 KNX 侧
Filter	对物理地址属于本支线或本区域的单播报文,可自由从 IP 侧转发到 KNX 侧

4.4.4. Broadcast frames

该参数为选项型参数。可选选项:

- * Router(默认)
- Block
- 该参数用于设置 KNXIP 路由器的对广播报文的过滤行为

Router	对所有广播报文不进行任何过滤,报文可自由从 IP 侧转发到 KNX 侧
Block	对所有广播报文进行阻拦,报文无法从 IP 侧转发到 KNX 侧

4.5. Ping control setting

4.5.1. Control group address number

该参数用于选择在网络异常和恢复时,发送数据的组地址个数。

4.5.2. Ping number for confirming

该参数用于设置确定异常以及网络恢复时的 PING 的次数。例如,当其为 3 时,如果发现 3 次 PING 功能异常,就认为网络出现异常。

4.5.3. Minute of ping period

网关发送 PING 报文的周期,单位为分钟。

4.5.4. Second of ping period

网关发送 PING 报文的周期,单位为秒。其与分钟组合后形成完整的发送周期。

4.5.5. Host ping ip address 1-4

该参数设置 PING 的目标 IP 地址。

4.6. Ping control group parameters

4.6.1. Group address data X type

该参数用于配置指定组地址所使用的数据类型,有 1bit、1byte 和 2byte。

4.6.2. Group address X....

这是一组参数,其按照 3 级划分,设置一个完整的组地址。包括 Group address X high、Group address X middle、 Group address X low。

4.6.3. Group data X if link up

该参数用于设定网关检测到网络连接恢复时,指定的组地址发送的数据值。 如果指定的组地址数据类型为 2 字节,那么需要分别设置发送数据的高位字节和低位字 节数据。如下图所示。

H-Byte of Grp-data x if link up/down 用于设置高 8 位字节。L-Byte of Grp-data x if link up/down 用于设置低 8 位字节。

4.6.4. Group data X if link down

该参数用于设定网关检测到网络异常时,指定的组地址发送的数据值。如果指定的组地址数据类型为 2 字节,那么需要分别设置发送数据的高位字节和低位字节数据。

4.7.ETS 连接管理

KNXIP路由器可以用于 ETS 编程接口,下载设备应用程序,读取总线报文,管理设备信息等。

- 点击进入 Extra ->Option ->Commnication -> Configure Interfaces...
- 在 ETS Connection Manager 页面中新建连接,并选择连接类型为"KNXnet/IP"
- 点击"Rescan",将扫描到同网段下的所有 IP 路由器,所有路由器将显示设备名(参数配置的名字)、IP 地址及 MAC 地址。
- 点击 "OK",返回 Communication页面点击 "Test",实现"OK"表示连接成功。

注: ETS4 连接有其特殊性,连接方法如下:

步骤 1: 点配置 → 通讯;

步骤 2: 点新建按钮,如下图:

步骤 3: 点新建按钮后,出现如下对话框:

在上述对话框中,各条目输入内容如下:

名称:输入网关的名称,自命名。

类型:选择 KNXnet/IP。

IP 地址:输入所选择的网关的 IP 地址。

端口:填入3617。 NAT模式:不选。

4.8. 多连接功能

KNXIP路由器最多支持 5 个客户端同时连接。

当第一个客户端连接到 IP 路由器之后,IP 路由器会为此分配一个"第二物理地址"用于访问总线,该地址可以在 ETS 中设置。当第二个客户端尝试连接时,IP 路由器将会在第一个客户端的"第二物理地址"之上增加 1,例如第一个客户端的地址为 15.15.201 时,第二客户端地址则为15.15.202,第三客户端地址则为15.15.203,第四客户端地址则为15.15.204,第五客户端地址则为 15.15.205。该"第二物理地址"在 KNX 网络内是为唯一的,重复冲突的物理地址将影响正常的通讯。

4.9. 工程典型配置

在工程配置中,往往需要 KNX 支线的组播数据都能够传送到后台或者远端控制端,并且要求能够通过一条支线的网关向其它支线的设备进行 ETS 配置。此时网关的过滤规则典型配置如下图所示:

如上图所示,KNX->IP 侧的组播报文和物理报文过滤规则都设置成 Router 方式,意味着 KNX 侧单播报文和组播都会发送到 IP 侧,以便 IP 侧的设备都能接收到这些报文。

IP->KNX 侧的组播报文和物理报文过滤规则都设置成 Filter 方式,这样将非本条支线的

单播报文和组播报文都过滤掉,降低 KNX 支线的负载。