Embedded Systems SIA, VAT No LV40003411103

Flush mounted 5 binary inputs + thermostat + LED control

Flush mounted 5 binary inputs / LED control with temperature sensor and thermostat is simply mounted on the backside of the conventional switch and makes it as a KNX sensor. In total 5 push buttons can be connected to one device. It acts also like a normal thermostat by having temperature sensor onboard. Each port of the device can be used as output for LED control.

ENG - Data sheet

Issue date 4.11.2012

Application

Lighting, HVAC applications

Types of product

Flush mounted 5 binary inputs
EXT5T

Standards and norms compliance

EMC:	EN61000-6-1
PCT	EN61000-6-3
	Certificate

Technical data:

Power supply:
Power consummation:

Interface:

29 V DC
11 mA

Binary inputs or outputs
Voltage if used as output
Current if used as output

KNX/EIB bus Input mode55 V

	KNX/EIB Temperature sensor	1 1		
Clamps:	KNX bus: Inputs/Outputs	1.5 mm 2 Sharp ZH 1.5mm connector (6 cables included)		
Operating elements	1 - programming LED			
	1 - programming button		\quad	Material:
:---				

The installation and assembly of electrical equipment may only be performed by skilled electrician. The devices must not be used in any relation with equipment that supports, directly or indirectly, human health or life or with application that can result danger of people, animals or real value

Mounting advice

The devices are supplied in operational status. The cables connections included can be clamped to the housing if required.

Electrical connection

The devices are constructed for the operation of protective low voltage (SELV). Grounding of device not needed. When switching the power supply on or off, power surges must be avoided.

Terminal connection scheme EXT-5

Binary input

ETS programming

Binary input settings

Port 1-5 settings:

- Disabled - specific input channel is disabled
- On / Off (edge) detect - On or Off state detection for the channel

Port mode		On / Off (edge) detect	\checkmark
On (rising edge)		Send 0	\checkmark
Off ffalling edge)		Send 1	\checkmark
- On (rising edge) [No action / Send 0/Send 1 / Toggle] - action to perform on rising edge			
\bigcirc	Off (falling edge) [No actio to perform on falling ed	on / Send 0 / Send	

- Short / Long press - Short or Long key press detection

- Short press [No action / Send 0/Send 1 / Toggle] - action to perform on short press
- Long press [No action / Send 0/Send 1 /Toggle] - action to perform on long press
- Long press delay [250ms..10s] - time period after which the key press is detected as Long press
- Step dimmer - Step dimmer is used to control 1 byte dimmer with a single binary

- Dimmer step [1..127] - dimmer step to use with long press
- Dimmer ON preset [0..255] - preset value when dimmer is ON
- Status LED - set the port is in status LED control mode. 1 = LED On, $0=$ LED Off
- Status LED, inverted - set the port is in status LED control mode. 1 = LED Off, $0=$ LED On

On short press, the device sends off (0\%) telegram if current value is not 0%, previous brightness value otherwise.

On long press, new value is increased or decreased by a redefined step. New value is sent about 4 times per second.

If final value is not 0% or 100%, direction of the step is switched to opposite.
The direction is always "UP" when current value is 0\%. The direction is always "DOWN" when current value is 100%.

Thermostat general

1.1.2 Binary 5 - in + Thermostat v3

- Heating control [Disabled / Enabled] - defines if the heating control is enabled. Specific menu appears once enabled
- Cooling control [Disabled / Enabled] - defines if the cooling control is enabled. Specific menu appears once enabled
- Base setpoint (degrees) [10..30C] - room temperature base setpoint
- Hysteresis (degrees) [0.5..2C] - interval during which the status will remain as current value. Used to exclude border value instability
- Frost protections (degrees) [5..10C] - temperature when the status for system is set as "frost detected"
- Overheat protection (degrees) [30..45C] - temperature when the status for system is set as "overheat detected"

Heating control

Once enabled in thermostat general setting, a new menu Thermostat - Heating appears.

- Stand-by mode offset (Setpoint - offset) [2..8] - decrease of the Base setpoint temperature while in stand-by mode
- Night mode offset (Setpoint - offset) [4..16] - decrease of the Base setpoint temperature while in night mode
- Heating mode output [Normal / Inverted] - in normal mode sends 1 if there is necessity to switch on heating. In inverted mode - sends 0

Cooling control

Once enabled in thermostat general setting, a new menu Thermostat - Cooling appears.

- Cooling setpoint adjust [2..8] - increase of Base setpoint while heating and cooling is enabled to detect when cooling should be switched on
- Stand-by mode offset (Cooling setpoint + ofset) [2.8] - increase of cooling setpoint temperature while in stand-by mode
- Night mode offset (Cooling setpoint + offset) [4..16] - increase of cooling setpoint temperature while in night mode
- Cooling mode output [Normal / Inverted] - in normal mode sends 1 if there is necessity to switch on cooling. In inverted mode - sends 0

- Temperature sensor type [Internal / External] - type of temperature sensor
- Temperature value send interval [10s..10min] - time interval after which to send the temperature value in the bus
- Temperature value compensation (degrees) [-5..5] - temperature value compensation e.g. in installation when it is located in place other than room where the heating/cooling control should be done

2.2.6 Object description

Nr	Object	Name	Type	$\begin{gathered} \text { Rea } \\ \mathrm{d} \end{gathered}$	Write	$\begin{gathered} \text { Transmi } \\ \mathbf{t} \\ \hline \end{gathered}$
0	Thermostat on/off	In : Control value	1.* Boolean (1.001 switch)	-	w	-
1	Thermostat on/off	Out: Status value	1.* Boolean (1.001 switch)	R	-	T
2	External temperature	In: Value	9.* 2-Byte Float (9.001 temperature C)	-	w	-
3	Thermostat temperature	Out: Value	9.* 2-Byte Float (9.001 temperature C)	R	-	T
4	Setpoint temperature	In: Control	9.* 2-Byte Float (9.001 temperature C)	-	W	T
5	Setpoint temperature	Out: Status	9.* 2-Byte Float (9.001 temperature C)	R	-	T
6	Comfort mode	\ln : $1=0$ n, $0=$ nothing	1.* Boolean (1.001 switch)	-	W	-
7	Stand-by mode	In: $1=0 \mathrm{n}, 0=$ nothing	1.* Boolean (1.001 switch)	-	W	-
8	Night mode	\ln : $1=$ on, $0=$ nothing	1.* Boolean (1.001 switch)	-	W	-
9	Heating output	Out: $1=$ on, $0=$ off	1.* Boolean (1.001 switch)	R	-	T
10	Cooling output	Out: $1=$ on, $0=$ off	1.* Boolean (1.001 switch)	R	-	T
11	Input 1	Out: Edge detect	1.* Boolean (1.001 switch)	R	W	T
11	Input 1	Out: Short press	1.* Boolean (1.001 switch)	R	W	T
11	Input 1	Out: Step dimmer	5.* 1-Byte Unsigned (5.001 scaling)	-	W	T
11	Port 1	In: Status LED	1.* Boolean (1.001 switch)	-	W	-
11	Port 1	In: Status LED, inverted	1.* Boolean (1.001 switch)	-	W	-
12	Input 2	Out: Edge detect	1.* Boolean (1.001 switch)	R	W	T
12	Input 2	Out: Short press	1.* Boolean (1.001 switch)	R	W	T
12	Input 2	Out: Step dimmer	5.* 1-Byte Unsigned (5.001 scaling)	-	W	T
12	Port 2	In: Status LED	1.* Boolean (1.001 switch)	-	W	-
12	Port 2	In: Status LED, inverted	1.* Boolean (1.001 switch)	-	W	-
13	Input 3	Out: Edge detect	1.* Boolean (1.001 switch)	R	W	T
13	Input 3	Out: Short press	1.* Boolean (1.001 switch)	R	W	T
13	Input 3	Out: Step dimmer	5.* 1-Byte Unsigned (5.001 scaling)	-	w	T
13	Port 3	In: Status LED	1.* Boolean (1.001 switch)	-	W	-
13	Port 3	In: Status LED, inverted	1.* Boolean (1.001 switch)	-	W	-
14	Input 4	Out: Edge detect	1.* Boolean (1.001 switch)	R	W	T
14	Input 4	Out: Short press	1.* Boolean (1.001 switch)	R	W	T
14	Input 4	Out: Step dimmer	5.* 1-Byte Unsigned (5.001 scaling)	-	W	T
14	Port 4	In: Status LED	1.* Boolean (1.001 switch)	-	W	-
14	Port 4	In: Status LED, inverted	1.* Boolean (1.001 switch)	-	W	-
15	Input 5	Out: Edge detect	1.* Boolean (1.001 switch)	R	W	T
15	Input 5	Out: Short press	1.* Boolean (1.001 switch)	R	w	T
15	Input 5	Out: Step dimmer	5.* 1-Byte Unsigned (5.001 scaling)	-	W	T
15	Port 5	In: Status LED	1.* Boolean (1.001 switch)	-	W	-
15	Port 5	In: Status LED, inverted	1.* Boolean (1.001 switch)	-	W	-
16	Input 1	Out: Long press	1.* Boolean (1.001 switch)	R	W	T
17	Input 2	Out: Long press	1.* Boolean (1.001 switch)	R	W	T
18	Input 3	Out: Long press	1.* Boolean (1.001 switch)	R	W	T
19	Input 4	Out: Long press	1.* Boolean (1.001 switch)	R	W	T
20	Input 5	Out: Long press	1.* Boolean (1.001 switch)	R	W	T

